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Abstract

Learning meaningful representations is at the heart of many tasks in the field of
modern machine learning. Recently, a lot of methods were introduced that allow
learning of image representations without supervision. These representations can
then be used in downstream tasks like classification or object detection. The quality
of these representations is close to supervised learning, while no labeled images are
needed. This survey paper provides a comprehensive review of these methods in a
unified notation, points out similarities and differences of these methods, and pro-
poses a taxonomy which sets these methods in relation to each other. Furthermore,
our survey summarizes the most-recent experimental results reported in the literature
in form of a meta-study. Our survey is intended as a starting point for researchers
and practitioners who want to dive into the field of representation learning.
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1 Introduction

Images often contain a lot of information which is irrelevant for further downstream tasks.
A representation of an image ideally extracts the relevant parts of it. The goal of rep-
resentation learning is to learn an encoder network fθ with learnable parameters θ that
maps an input image x to a lower-dimensional representation (embedding) y = fθ(x). The
main purpose of this paper is to present and discuss the different approaches and ideas
for finding useful encoders. Note that in the machine learning literature this setup is also
called feature learning or feature extraction.
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1.1 Supervised and Unsupervised Learning

Before categorizing the various methods of representation learning, we begin by distinguish-
ing the two basic settings of machine learning: (i) supervised learning learns a function
given labeled data points, interpreted as input and output examples, (ii) whereas in un-
supervised learning we learn something given only data points (unlabeled). It is possible
to take the view that also for unsupervised learning the goal is to learn a function, e.g.,
in clustering we learn a classification function and invent labels at the same time, in di-
mensionality reduction (such as PCA, ISOMAP, LLE, etc.) we learn a regression function
and invent lower-dimensional embeddings simultaneously. In light of this, representation
learning is an instance of unsupervised learning, since we are only given a set of unlabeled
data points and our goal is to learn an encoder, that maps the data onto some other
representation that has favorable properties.

1.2 Self-supervised Learning

Recently, new machine learning methods emerged, that have been labeled self-supervised
learning. In a nutshell, such methods create an encoder by performing the following two
separate steps:

(i) Invent a supervised learning task by creating a target t for each given image x.

(ii) Apply supervised learning to learn a function from inputs x to targets t.

The mechanism that generates the targets can be manually designed or can include learned
neural networks. Note that the targets are not necessary stationary, but could change
during training. Even though self-supervised learning applies classical supervised learning
as its second step, it is overall best viewed as an unsupervised method, since it only takes
unlabeled images as its starting point.

1.3 Outline

This paper strives to give an overview over recent advances in representation learning.
Starting from the autoencoder, we will discuss different methods which we group in the
following way:

• Pretext task methods solve an auxiliary task, e.g., by predicting the angle by which
an input image was rotated. The idea is that the representations learned along the
way are also useful for solving other tasks. We will discuss these methods further in
Section 2.

• Information maximization methods learn networks that are invariant to various image
transformations and at the same time avoid trivial solutions by maximizing informa-
tion content. Section 3 presents some of these methods in detail.
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• Teacher-student methods consist of two networks where one extracts knowledge from
the other. We will take a closer look at these methods in Section 4.

• Contrastive learning methods discriminate between positive and negative examples
that are defined by the method on-the-fly. In Section 5 we review these contrastive
methods in detail.

• Clustering-based methods invent multiple class labels by clustering the representations
and then train a classifier on those labels. Section 6 summarizes the most relevant
representation learning methods that use clustering.

In Section 7 we further put the discussed methods in relation to each other and in Section
8 we summarize experimental results that were reported in the literature in a meta study.

While we focus on approaches for visual representation learning in this paper, there exist
further approaches which are specialized for graphs (Grover and Leskovec, 2016; Perozzi
et al., 2014; Kipf and Welling, 2016), time-series (Eldele et al., 2021) or text (Mikolov
et al., 2013b,a; Kenton and Toutanova, 2019), which we omit.

1.4 Notation

Before describing the specifics of the different representation learning methods, we start
by defining the notation used in this paper. Given a dataset of images, we write

X = [x1, . . . , xn] (1)

for a randomly sampled batch of images. Every representation learning method trains an
encoder network fθ, where θ are the learnable parameters. This encoder network computes
a representation

Y = [y1, . . . , yn] = [fθ(x1), . . . , fθ(xn)] = fθ(X) (2)

of the images in X. Some methods additionally train a projection network gϕ, with pa-
rameters ϕ, that computes projections

Z = [z1, . . . , zn] = [gϕ(y1), . . . , gϕ(yn)] = gϕ(Y ) (3)

of the representations in Y . There are methods that also train a prediction network
qψ, with parameters ψ, that computes a prediction based on z or y. Both, projections
and predictions are only used to train the network and after training the projection and
prediction networks are discarded, and only the encoder fθ is used for downstream tasks.

Most methods apply a transformation to the input image to obtain a view of the
original image. We write x

(j)
i = t(xi) for the j-th view of the original image xi, which

was obtained by applying the transformation t. Usually, these methods randomly sample
transformations from a given set of transformations T and can differ for each image in the
batch. This is why we treat t as a random variable that is sampled for each image of the
batch. In contrast to that, other methods use predefined transformations t(1), . . . , t(m) that
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are fixed and do not change. In Section 3 we give more details and some examples of these
transformations. We write

X(j) = [x
(j)
1 , . . . , x(j)n ] = t([x1, . . . , xn]) = t(X) (4)

for the batch of the j-th view. We use a similar notation for the resulting representations
Y (j) = [y

(j)
1 , . . . , y

(j)
n ] and projections Z(j) = [z

(j)
1 , . . . , z

(j)
n ]. Some methods split the input

image into patches, which we also consider as a special case of transformation, where each
patch is a view of the image. In that case we write Xi = [x

(1)
i , . . . , x

(m)
i ], which contains all

m views of the image xi and denote the corresponding representations and projections as
Yi = [y

(1)
i , . . . , y

(m)
i ] and Zi = [z

(1)
i , . . . , z

(m)
i ].

In some cases, the calculation of the representations can be decoupled such that each
view is processed independently, i.e., Yi = [fθ(x

(1)
i ), . . . , fθ(x

(m)
i )] = fθ(Xi). If this is pos-

sible we call the corresponding encoder a Siamese encoder. The same distinction can be
made for the other networks (projector and predictor). A Siamese projector computes

Zi = [gϕ(y
(1)
i ), . . . , gϕ(y

(m)
i )] = gϕ(Yi) individually. However, as we will see later, this is not

always the case as some networks operate on multiple views simultaneously.
We use L to refer to the loss function that is used to train the parameters using stochas-

tic gradient descent (SGD). Sometimes the total loss consists of multiple components which
we denote using the letter ℓ.

We use square brackets to access elements of vectors and matrices, e.g., the j-th element
of vector v is written as v[j] and the entry at column j and row k of matrix C is written
as C[j, k]. Furthermore, we define the softmax function that normalizes a vector v ∈ Rd

to a probability distribution as

(softmaxτ (v))[j] =
exp(v[j]/τ)∑d
k=1 exp(v[k]/τ)

for j = 1, . . . , d, (5)

where τ > 0 is a temperature parameter which controls the entropy of that distribution (Wu
et al., 2018). The higher the value of τ the closer the normalized distribution is to a uniform
distribution. We write softmax(v) when no temperature is used, i.e., when τ = 1.

Distance metrics and similarity measures. Throughout the paper, we use various
concepts to compare two vectors. We introduce these concepts in the following. First, we
define the squared error between two vectors v, w ∈ Rd as

dse(v, w) = ∥v − w∥22 = (v − w)⊤(v − w) =
d∑
j=1

(v[j]− w[j])2. (6)

Note that the squared error is the same as the squared Euclidean norm of the residuals.
Sometimes, the vectors v and w are normalized before the squared error is calculated. We
denote the resulting distance metric as normalized squared error

dnse(v, w) =

∥∥∥∥ v

∥v∥2
− w

∥w∥2

∥∥∥∥2
2

. (7)
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We define the cosine similarity as

scos(v, w) =
v⊤w

∥v∥2 ∥w∥2
. (8)

Note that dnse and scos are linearly related, i.e.,

dnse(v, w) = 2− 2
v⊤w

∥v∥2 ∥w∥2
= 2− 2 scos(v, w) (9)

⇔ scos(v, w) = 1− 1

2
dnse(v, w). (10)

To measure the distance between two discrete probability distributions described by the
entries of two vectors v and w, the cross-entropy can be used which is given as

dce(v, w) = −
d∑
j=1

v[j] logw[j]. (11)

Note that the cross-entropy does not fulfill the triangle inequality and is therefore no dis-
tance metric in a mathematical sense. A common loss function for multiclass classification
is the cross-entropy between scores v ∈ Rd that are normalized using softmax and a one-hot
distribution of the true class label c ∈ N, which we denote by

dclassification(v, c) = dce(onehot(c), softmax(v)) (12)

= −v[c] + log

(
d∑
j=1

exp v[j]

)
, (13)

where onehot(c) is a vector with 1 in the c-th component and 0 everywhere else.

2 Pretext Task Methods

In the introduction we have defined the concept of self-supervised learning which relies
on defining a mechanism that creates targets for a supervised learning task. There are
many possibilities to invent such supervised learning problems. These learning problems
are usually called pretext tasks. The idea is that the features learned by solving the pretext
task are also helpful for solving other problems. In the following we present works, that
creatively came up with such tasks.

2.1 Autoencoders

Autoencoders (Le Cun, 1987) have been part of machine learning for a very long time and
in the light of the previous section, they can be seen as early instances of self-supervised
learning: (i) the invented targets are the inputs themselves and (ii) the learned function
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fθ qψ
y

representview predict

Figure 1: An autoencoder consists of two networks: an encoder fθ that maps the input
image to a representation and a predictor qψ that is trained to reconstruct the original
image from the representation.

is a bottleneck neural network consisting of an encoder fθ that maps an image xi to a
low-dimensional representation yi = fθ(xi) and a predictor qψ that reconstructs the input
image x̂i = qψ(yi) from its representation. Given a batch of images X, the encoder and
predictor networks are jointly trained to minimize the reconstruction error

LAE
θ,ψ =

1

n

n∑
i=1

dse(x̂i, xi). (14)

There are many variants of the autoencoder: denoising autoencoder (Le Cun, 1987),
stacked denoising autoencoder (Vincent et al., 2010), contractive autoencoder (Rifai et al.,
2011) or variational autoencoder (VAE, Kingma and Welling, 2013).

2.2 Rotation Network (RotNet)

The idea of the RotNet which was introduced by Gidaris et al. (2018) is to learn a represen-
tation that is useful to predict the angle of a random rotation applied to the input image.
The assumption is that a representation that can predict the rotation is also valuable for
other tasks. The authors show that even a small number of rotations is sufficient to learn
a good representation. Best results are obtained when the number of rotations is four (0°,
90°, 180°, 270°). In that case the rotation augmentation can be efficiently implemented
using flips and transposes and no interpolation is needed.

t(j) fθ qψ
y
(j)
i


0
1
0
0


0°
90°
180°
270°

view represent predict

Figure 2: RotNet solves the task of predicting image rotations to obtain representations
for downstream tasks.

Given a batch of images X, we consider a single image xi. Four views x
(j)
i = t(j)(xi)

are created using the rotation transformations t(1), t(2), t(3), t(4). The Siamese encoder fθ
converts each view into a representation y

(j)
i = fθ(x

(j)
i ). The Siamese predictor qψ is then
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fθ qψ
Yi


0
1
...
0


8, 1, 3, 4, 9, 5, 2, 6, 7
5, 6, 7, 4, 9, 1, 8, 3, 2

...
7, 2, 9, 1, 5, 3, 8, 6, 4

view represent predict

Figure 3: Jigsaw extracts patches from an image that are then permuted. The pretext
task is to find the permutation that was used to permute the images. The context-free
network fθ processes each patch separately and the representations are only joined in the
latter layers.

used to predict the index of the rotation that was applied to the original image. Both
networks are trained by minimizing the classification loss

LRotNet
θ,ψ =

1

n

n∑
i=1

4∑
c=1

dclassification(qψ(y
(c)
i ), c) (15)

for each of the four rotations. After training, the classification head qψ is discarded and
only fθ is used to calculate representations (of images that were not rotated). The authors
use a Network-in-Network architecture (Lin et al., 2013) for their experiments on CIFAR-10
and the AlexNet architecture (Krizhevsky et al., 2017) for experiments on ImageNet.

2.3 Solving Jigsaw Puzzles

Jigsaw (Noroozi and Favaro, 2016) is similar to RotNet in the sense that it also solves a
classification task. However, instead of rotating the image, the transformation consists of
randomly permuting several patches of the image like a jigsaw puzzle. The pretext task
of the model is then to predict the class of the permutation that was used to shuffle the
patches. To facilitate the task, it is necessary to restrict the used permutations to a subset
of all permutations. In their work the authors use 1000 predefined permutations (instead
of 9! = 362 880 for a 3× 3 grid of tiles).

From an input image xi nine non-overlapping randomly permuted patches [x
(1)
i , . . . , x

(9)
i ]

are extracted, where the order of the patches follows one of the predefined permutations.
After that, the Siamese encoder fθ converts each patch into a representation y

(j)
i = f(x

(j)
i ).

The predictor qψ is used to predict the index ci of the permutation that was applied to the

original image, given all patch representations Yi = [y
(1)
i , . . . , y

(9)
i ] at once. The networks

are trained by minimizing the loss

LJigsaw
θ,ψ =

1

n

n∑
i=1

dclassification(qψ(Yi), ci) (16)

between the class scores and the index of the used permutation ci. The encoder fθ is
implemented as a truncated AlexNet. The representations Yi are concatenated to form
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Yi
fθ qψ

view represent predict

Figure 4: The masked autoencoder predicts masked patches using vision transformers for
the encoder and predictor.

the input of the classification head qψ, which is implemented as a multi-layer perceptron
(MLP). After training, the classification head is discarded and the encoder is used to obtain
image representations for other downstream task.

2.4 Masked Autoencoders (MAE)

Masked autoencoders (He et al., 2022) are similar to denoising autoencoders, where the
input images are corrupted and the autoencoder tries to reconstruct the original image.
More specifically, the input image is split into smaller non-overlapping patches, from which
a random subset is masked out.

Given a batch of images X, we consider a single image xi. The image is split up into
m patches Xi = [x

(1)
i , . . . , x

(m)
i ], some of which will be randomly chosen to be masked.

We call the set of indices of the masked patches Mmask
i and the set of unmasked indices

Mkeep
i . The encoder fθ converts the unmasked patches into patch representations Yi =

[y
(j)
i : j ∈Mkeep

i ] = fθ([x
(j)
i : j ∈Mkeep

i ]), implemented as a vision transformer (Dosovitskiy
et al., 2021). The predictor qψ is another vision transformer that predicts the masked

patches X̂i = [x̂
(j)
i : j ∈Mmask

i ] = qψ(Yi,M
mask
i ) from Yi with a mask token for each index

in Mmask
i . See Figure 4 for an illustration. The loss is the mean squared error between the

pixels of the predicted patches and the masked patches

LMAE
θ,ψ =

1

n

n∑
i=1

∑
j ∈Mmask

i

dse

(
x̂
(j)
i , x

(j)
i

)
. (17)

Without precaution the model could “cheat” by predicting image patches from neigh-
boring pixels, since the information in natural images is usually very spatially redundant.
To learn good representations, it is crucial that the masking ratio is very high, e.g., 75%,
to encourage the encoder to extract more high-level features.

3 Information Maximization Methods

Many self-supervised representation learning methods make use of image transformations.
Jigsaw and Rotation Networks, two approaches from the preceding section, apply se-
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(a) Original image (b) Gaussian noise (c) Gaussian blur (d) Color jitter

(e) Grayscale (f) Random Crop (g) Flip (h) Sobel filter

Figure 5: Example transformations applied to an image of a puffin.

lected transformations to image examples with the aim to predict the transformation’s
parametrization. In contrast, the following methods focus on learning representations that
are invariant to certain transformations. Such a task typically entails a popular failure
mode, called representation collapse. It commonly describes trivial solutions, e.g., constant
representations, that satisfy the invariance objective, but provide little to no informational
value for actual downstream tasks. Another perspective on the representation collapse is
to view it as an information collapse, concentrating a majority of the probability mass of
the embedding in a single point, which leads to a decrease of information content.

To avoid the representation collapse the so-called information maximization methods
have been developed. They form a class of representation techniques that focus on the
information content of the embeddings (Zbontar et al., 2021; Bardes et al., 2021; Ermolov
et al., 2021). For instance, some methods explicitly decorrelate all elements of embedding
vectors. This effectively avoids collapse and results in an indirect maximization of informa-
tion content. In the following, we present methods that implement this technique using the
normalized cross-correlation matrix of embeddings across views (Zbontar et al., 2021), the
covariance matrix for single views (Bardes et al., 2021), as well as a whitening operation
(Ermolov et al., 2021).

Transformations. The main idea of information maximization methods is that the
learned representations should be invariant with respect to certain transformations, i.e.,
the original image and the transformed images should yield the same representations.
We have already encountered two transformations in the previous section, the rotation
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and jigsaw transformation. There are many more transformations possible: the following
transformations have been proven useful for the next methods to be described.

1. Horizontal flipping: Most natural images can be flipped horizontally without chang-
ing the semantics, e.g., an image of a car still shows a car after being flipped. Vertical
flipping can cause problems when for example the sky is suddenly at the bottom of
the image.

2. Blurring: Convolving an image with a Gaussian filter is another way to transform an
image.

3. Adding Gaussian noise: Learned representations should also be (to some extent)
invariant to the application of noise.

4. Sobel filter: Applying a Sobel filter to an image highlights the edges of an image.
These edges usually still contain a lot of relevant information about the image.

5. Cropping and resizing: Scaling the image to a different size should also keep the
semantic information.

6. Color jittering: Changing the contrast, brightness and hue of an image yields another
instance of an image that shows the same content.

7. Grayscaling: Converting color-images to grayscale images is closely related to color
jittering.

Note that these image transformations are closely related to dataset augmentation tech-
niques used in supervised learning (Yang et al., 2022; Shorten and Khoshgoftaar, 2019).

3.1 Barlow Twins

t
fθ gϕ

t
fθ gϕ

X

X(1) Y (1) Z(1)

X(2) Y (2) Z(2)

view represent project

LBT
θ,ϕ

Figure 6: Barlow twins takes two views of the input batch and minimizes the correlation
of the projected representations.

The central idea behind this framework is the principle of redundancy reduction. This
principle was introduced by the neuroscientist Barlow (1961) and states that the reduction
of redundancy is important for the organization of sensory messages in the brain.
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To implement this redundancy reduction principle, the Barlow Twins approach takes
a batch of images X and creates two views X(1) = t(X) and X(2) = t(X) of these im-
ages, where t ∼ T is a transformation that is randomly sampled from T for every im-
age and every view. A Siamese encoder fθ computes representations Y (1) = fθ(X

(1))
and Y (2) = fθ(X

(2)), which are fed into a Siamese projector gϕ to compute projections

Z(1) = [z
(1)
1 , . . . , z

(1)
n ] = gϕ(Y

(1)) and Z(2) = [z
(2)
1 , . . . , z

(2)
n ] = gϕ(Y

(2)) for both views.
The idea of Barlow Twins is to regularize the cross-correlation matrix between the

projections of both views. The cross-correlation matrix is calculated as

C =
1

n

n∑
i=1

(
(z

(1)
i − µ(1))/σ(1)

)(
(z

(2)
i − µ(2))/σ(2)

)⊤
, (18)

where µ(j) and σ(j) are the mean and standard deviation over the batch of projections of
the j-th view, calculated as

µ(j) =
1

n

n∑
i=1

z
(j)
i , (19)

σ(j) =

√√√√ 1

n− 1

n∑
i=1

(z
(j)
i − µ(j))2 . (20)

The loss function is then defined as

LBT
θ,ϕ =

d∑
k=1

(1− C[k, k])2 + λ
d∑

k=1

∑
k′ ̸=k

C[k, k′]2, (21)

where d is the number of dimensions of the projection and λ > 0 is a hyperparameter. The
first term promotes invariance with regard to the applied transformations and the second
term decorrelates the learned embeddings, i.e., reduces redundancy. By using this loss, the
encoder fθ is encouraged to predict embeddings that are decorrelated and thereby non-
redundant. The Barlow Twins are trained using the LARS optimizer (You et al., 2017).
Note that this loss function is related to the VICReg method, where the first term is called
variance term and the second covariance term.

3.2 Variance-Invariance-Covariance Regularization (VICReg)

VICReg was introduced by Bardes et al. (2021) and is a joint-embedding architecture that
falls into the category of information maximization methods. Figure 7 gives an overview
of the architecture, which is identical to Barlow twins, but uses a different loss function. It
aims to maximize agreement between representations of different views of an input, while
preventing informational collapse using two additional regularization terms. Specifically,
VICReg defines regularization terms for variance, invariance and covariance.

12



t
fθ gϕ

t
fθ gϕ

X

X(1) Y (1) Z(1)

X(2) Y (2) Z(2)

view represent project

LVICReg
θ,ϕ

Figure 7: VICReg takes two views of the input batch and minimizes the mean squared
error between the projected representations, while regularizing the covariance matrices of
representations from individual views to avoid representation collapse.

Given a batch of images X, two views X(1) = t(X) and X(2) = t(X) are defined, where
t ∼ T is, again, randomly sampled from T for every image and every view. A Siamese
encoder fθ computes representations Y (1) = fθ(X

(1)) and Y (2) = fθ(X
(2)), which are fed

into a Siamese projector gϕ to compute projections Z(1) = [z
(1)
1 , . . . , z

(1)
n ] = gϕ(Y

(1)) and

Z(2) = [z
(2)
1 , . . . , z

(2)
n ] = gϕ(Y

(2)). Each projection has d dimensions. For each view, the
covariance matrix of the projections is computed, which is defined as

C(j) =
1

n− 1

n∑
i=1

(
z
(j)
i − µ(j)

)(
z
(j)
i − µ(j)

)⊤
, (22)

where µ(j) is the mean over the batch of projections of the j-th view, i.e.,

µ(j) =
1

n

n∑
i=1

z
(j)
i . (23)

The variance term aims to keep the standard deviation of each element of the embedding
across the batch dimension above a margin b. Practically, this prevents embedding vectors
to be the same across the batch and thus is one of the two mechanisms that intent to
prevent collapse. It can be implemented using a hinge loss

ℓV(Z
(j)) =

1

d

d∑
k=1

max

(
0, b−

√
C(j)[k, k] + ε

)
. (24)

where ε > 0 is a small hyperparameter for numerical stability. Bardes et al. (2021) used
b = 1. On that note, the variance term is closely related to the invariance term of Barlow
Twins (Zbontar et al., 2021), but applied with a different intention. While Barlow Twins
practically maximizes the squared diagonals of the normalized cross-correlation matrix to
encourage correlation of embedding elements across views, VICReg maximizes the square
root of the diagonals of the covariance matrix of single views in order to prevent collapse.
Note, that the maximization in Barlow Twins is restricted by the preceding normalization
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of the embeddings. As VICReg does not apply a normalization, the margin loss is used to
restrict this optimization.

The covariance term decorrelates elements of embedding vectors for single views in
order to reduce redundancy and prevent collapse. This is achieved by minimizing the
squared off-diagonal elements of the covariance matrix C(j) towards 0, i.e.,

ℓC(Z
(j)) =

1

d

d∑
k=1

∑
k′ ̸=k

(
C(j)[k, k′]

)2
. (25)

Note, that this is similar to the redundancy reduction term used in Barlow Twins (Equation
21, right summand), the main difference being again that Barlow Twins applies it across
views, but with a similar intention.

Finally, the invariance term is used to maximize the agreement between two projections
z
(1)
i and z

(2)
i of the same image, thus inducing invariance to the transformations that were

applied to xi. For this, Bardes et al. (2021) apply the mean squared error between the
projections

ℓI(Z
(1), Z(2)) =

1

n

n∑
i=1

dse

(
z
(1)
i , z

(2)
i

)
. (26)

Notably, it is the only loss term in VICReg operating across different views.
Overall, the loss of VICReg can be defined as the weighted sum of all three regulariza-

tions for the given views

LVICReg
θ, ϕ (X) = λV[ℓV(Z

(1)) + ℓV(Z
(2))] + λC[ℓC(Z

(1)) + ℓC(Z
(2))] + λIℓI(Z

(1), Z(2)), (27)

where λV, λI, λC > 0 are hyperparameters that balance the individual losses.

3.3 Self-Supervised Representation Learning using Whitening
(WMSE)

Whitening linearly transforms a set of data points, such that the resulting data points
are decorrelated and have unit variance, i.e., the covariance matrix becomes the identity
matrix. The method WMSE (Ermolov et al., 2021) applies this idea to the embeddings of
images to prevent the representation collapse.

Given a batch of images X, random transformations are applied to obtain m views
X(j) for all j ∈ {1, . . . ,m}. A Siamese encoder fθ maps the views onto representations
Y (j) = fθ(X

(j)), which are then fed into a Siamese projector gϕ to compute projections

Z(j) = [z
(j)
1 , . . . , z

(j)
n ] = gϕ(Y

(j)). All projections are then concatenated into a single matrix

Z = [z
(1)
1 , . . . , z

(1)
n , . . . , z

(m)
1 , . . . , z

(m)
n ]. This matrix is whitened to obtain Z̃ by removing

the mean and decorrelating it using the Cholesky decomposition of the inverse covariance
matrix, i.e.,

Z̃ = [z̃
(1)
1 , . . . , z̃(1)n , . . . , z̃

(m)
1 , . . . , z̃(m)

n ] = WZ

(
Z − 1

nm

n∑
i=1

m∑
j=1

z
(j)
i 1⊤

nm

)
, (28)
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Figure 8: WMSE training: The batch of input images X are randomly transformed and fed
into the encoder network fθ. The representations are then projected using the projection
head gϕ. Next, whitening is applied to the projections. The networks are trained by
minimizing the normalized MSE between the projections.

where 1nm is an all-ones vector with nm entries and WZ is the Cholesky factor of the
inverse covariance matrix PZZ (also known as the precision matrix), i.e., WZW

⊤
Z = PZZ .

Note that the Cholesky decomposition is differentiable which allows to backpropagate
through it during training.

To train the models, the normalized squared error between all pairs of the whitened
projections is minimized, i.e., the loss function is defined as

LWMSE
θ,ϕ =

1

n

n∑
i=1

2

m(m− 1)

m∑
j=1

m∑
k=j+1

dnse

(
z̃
(j)
i , z̃

(k)
i

)
. (29)

The constant 2/(m(m − 1)) is the number of comparison per image. The whitening step
is essential to prevent the representations from collapsing. The objective maximizes the
similarity between all augmented pairs while also preventing representation collapse by
enforcing unit covariance on the projections.

Batch slicing. One problem of the original method is that the loss has a large variance
over consecutive training batches. To counteract this issue, Ermolov et al. (2021) employ
so-called batch slicing: the idea of batch slicing is that different views of the same image
z
(1)
i , z

(2)
i , . . . , z

(m)
i should not be in the same batch when the whitening matrix is calculated.

For this, Z is partitioned into m parts. The elements of each part are then permuted
using the same permutation for each of the m parts. Finally, each of the parts is further
subdivided into d subsets which are then used to calculate the whitening matrix for that
specific subset. In that way, the loss minimization is dependent onm·d covariance matrices
that need to satisfy the identity, leading empirically to lower variance.

4 Teacher-Student Methods

Methods based on teacher-student learning are closely related to information maximization
methods. Similar to information maximization methods, the student learns to predict the
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Figure 9: BYOL consists of a student and teacher network. The teacher network is not
updated via gradient descent (stop-gradient) and thus provides stable representations for
the student network to learn. The teacher network is updated iteratively via an exponential
moving average of the student. The student branch has a predictor which is trained to
match the fixed representations of the teacher.

teacher’s representations across different image transformations. This allows the student
to learn invariant representations that are robust to different transformations of the same
image. These methods consist of two branches, where one is considered the student and
the other the teacher. To prevent representational collapse as defined in Section 3, the
teacher provides stable target representations for the student to predict. To provide stable
targets, the teacher is not updated using gradient descent and its parameters are fixed when
updating the student. Sometimes a momentum encoder is used between the teacher and
student to update the fixed targets. That is, the weights from the student are slowly copied
to the teacher to provide more recent targets. The teacher usually has the same architecture
as the student, but does not necessarily have the same parameters. The teacher can be
a running average of the student’s representations, where, e.g., a momentum encoder is
used to update the teacher network with the student’s weights. For some teacher-student
methods the teacher shares the student’s weights and an additional predictor network has
to predict the teacher’s representation.

4.1 Bootstrap Your Own Latent (BYOL)

BYOL (Grill et al., 2020) is inspired by the observation that learning representations by
predicting fixed representations from a randomly initialized target network avoids represen-
tational collapse albeit with subpar performance. This naturally entails a teacher-student
architecture where the teacher (target network) provides stable representations for the
student (online network) to learn on.

BYOL defines two different networks: a student network and a teacher network. The
architecture is shown in Figure 9, the student network and teacher network consist of the
following parts:

• Student network: encoder fθ, projector gϕ, predictor qψ
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• Teacher network: encoder fθ̄, projector gϕ̄

The encoder f and projector g are present in both the student and teacher networks,
whereas the predictor q is only part of the student network.

Learning augmentation-invariant features from the teacher. Like information-
maximization methods, teacher-student methods learn representations by applying dif-
ferent transformations to the images (see Section 3). Given an image xi, BYOL ap-

plies randomly-sampled transformations t ∼ T to obtain two different views x
(1)
i = t(xi)

and x
(2)
i = t(xi). The student network computes representations y

(j)
i = fθ(x

(j)
i ), projec-

tions z
(j)
i = gϕ(y

(j)
i ), and predictions ẑ

(j)
i = qψ(z

(j)
i ) for both views j ∈ {1, 2}. The views

are also fed to the teacher network to obtain target projections z̄
(1)
i = gϕ̄(fθ̄(x

(1)
i )) and

z̄
(2)
i = gϕ̄(fθ̄(x

(2)
i )).

BYOL minimizes two normalized squared errors: (i) between the prediction of the first
view and the target projection of the second view, (ii) between the prediction of the second
view and the target projection of the first view. The final loss function is

LBYOL
θ,ϕ,ψ =

1

n

n∑
i=1

[
dnse(ẑ

(1)
i , z̄

(2)
i ) + dnse(ẑ

(2)
i , z̄

(1)
i )
]
. (30)

Note that the loss is minimal when the cosine similarity between the vectors is 1. Thus,
representations are learned that are similar for two different transformations. In other
words, the information content in the learned representations is maximized.

Teacher-student momentum encoder. At each training step, the loss is minimized
with respect to θ, ϕ, and ψ. That is, only the weights of the student are updated by the
gradient of the loss function using the LARS optimizer (You et al., 2017). The weights of
the teacher are updated by the exponential moving average (Lillicrap et al., 2019), i.e.,

θ̄ ← τ θ̄ + (1− τ)θ, (31)

ϕ̄← τ ϕ̄+ (1− τ)ϕ, (32)

where τ ∈ [0, 1] controls the rate at which the weights of the teacher network are updated
with the weights of the student network.

The authors show that BYOL’s success relies on two key components: (i) keeping
the predictor qψ near optimal at all times by predicting the stable target representations,
and (ii) updating the parameters in the direction of ∇θ,ϕ,ψLBYOL and not in the direction
of ∇θ̄,ϕ̄LBYOL. In other words, the proposed loss and update do not jointly optimize
the loss over θ, ϕ and θ̄, ϕ̄, which would lead to a representation collapse. Chen and He
(2021) provide further insight on how this is related to the predictor: regarding (i) it is
observed that keeping the learning rate of the predictor fixed instead of decaying it during
training improves performance, which supports the fact that the predictor should learn the
latest representations. Regarding (ii) Chen and He (2021) use a predictor that maps the
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Figure 10: DINO consists of two ViTs, one acting as a student and the other as teacher.
The embeddings of the ViT’s are transformed into a Softmax distribution which produces
soft labels for both the student and the teacher. The knowledge of the student is then
iteratively distilled onto the teacher, which provides stable targets for the student.

projection to the identity. They argue that the gradient of the symmetrized loss with an
identity predictor, i.e., between the two projections cancels out the stop-gradient operator.
In this case the gradient of the symmetrized loss between the two projections is in the
same direction, hence leading to a collapsed representation. Note that this analysis was
performed for SimSiam (Chen and He, 2021), which does not use a momentum encoder.
It is feasible however that the predictor plays the same role for BYOL.

4.2 Self-Distillation With No Labels (DINO)

One of the main contributions of DINO (Caron et al., 2021) is adapting the teacher-student
architecture closer to the knowledge distillation framework (Gou et al., 2021), where instead
of matching the output embeddings directly, the teacher provides soft labels by applying
a softmax operation on its output. The authors show that this facilitates preventing a
representation collapse.

DINO defines a student and a teacher network. The student consists of an encoder
fθ and a projector gϕ with parameters θ and ϕ. The encoder is implemented as a vision
transformer (ViT, Dosovitskiy et al., 2021) and the projector as an MLP. The teacher
consists of an encoder fθ̄ and a projector gϕ̄ with the same architecture as the student, but
a separate set of parameters θ̄ and ϕ̄.

DINO uses a multi-crop strategy first proposed by Caron et al. (2020) to create a batch

of m views Xi = [x
(1)
i , . . . , x

(m)
i ] of an image xi. Each view is a random crop of xi followed

by more transformations. Most crops cover a small region of the image, but some crops
are of high resolution, which we refer to as local and global views, respectively. Let Mi

be the set of indices of the global views. The idea is that the student has access to all
views, while the teacher only has access to the global views, which creates “local-to-global”
correspondences (Caron et al., 2021). See Figure 11 for an illustration.

The student computes representations y
(j)
i = fθ(x

(j)
i ) and projections z

(j)
i = gϕ(y

(j)
i ) for

each view. The teacher computes target projections z̄
(j)
i = gϕ̄(fθ̄(x

(j)
i )) for the global views
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Figure 11: Two sets of augmented crops for the teacher and student as defined by the
multi-crop augmentation strategy. The teacher set contains two global views which cover
at least 50% of the augmented image. The student set is made up of k patches that cover
less than 50% of the other augmented version of the input image.

j ∈Mi.

Preventing collapse. Caron et al. (2021) experimentally discover two forms of collapse:
Either the computed probability distribution is uniform, or one dimension dominates,
regardless of the input. This motivates two countermeasures:

1. To prevent collapse to a uniform distribution, the target distribution of the teacher
is sharpened by setting the temperature parameter τ to a small value.

2. To prevent one dimension from dominating, the output of the teacher is centered to
make it more uniform. This is accomplished by adding a centering vector c as a bias
to the teacher, which is computed with an exponentially moving average

c← βc+ (1− β)z̄, (33)

where β ∈ [0, 1] is a decay hyperparameter determining to what extent the centering
vector is updated and

z̄ =
1

n

n∑
i=1

1

|Mi|
∑
j ∈Mi

z̄
(j)
i (34)

is the mean of all projections of the teacher in the current batch.

Learning invariant features via soft labels. DINO formulates the task of predicting
the target projections as a knowledge distillation task. The projections of the teacher and
the student are converted to probability distributions by applying the softmax function
over all components. Hereby, the cross-entropy loss can be applied, where the teacher
computes soft labels for the student. The total loss function matches every view of the
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student to every global view of the teacher (except the same global views), i.e.,

LDINO
θ,ϕ =

1

n

n∑
i=1

∑
j ∈Mi

∑
k ̸=j

dce(softmaxτ (z̄i
(j) − c), softmaxρ(z

(k)
i )), (35)

where τ, ρ > 0 are hyperparameters controlling the temperature of the distributions (see
Section 1.4) for the teacher and the student, respectively. Overall, the parameter updates
are very similar to BYOL’s, since the student network is updated by minimizing the loss
LDINO
θ,ϕ using the AdamW optimizer, and the teacher network is updated by an exponential

moving average of the student, i.e.,

θ̄ ← αθ̄ + (1− α)θ, (36)

ϕ̄← αϕ̄+ (1− α)ϕ, (37)

where α ∈ [0, 1] controls the rate at which the weights of the teacher network are updated
with the weights of the student network.

The authors identify interesting properties when training ViTs in a self-supervised
manner. ViTs trained via self-supervision are able to detect object boundaries within
a scene layout which is information that can be extracted within the attention layers.
Furthermore, the learned attention maps learn segmentation masks, i.e., the objects are
separated from the background in the attention masks. These attention masks allow DINO
to perform well on downstream tasks simply by using a k-nearest-neighbor classifier on its
representations.

4.3 Efficient Self-Supervised Vision Transformers (EsVit)

Li et al. (2021) keep the same teacher-student architecture as Caron et al. (2021), but
replace the ViTs in Caron et al. (2021) with multi-stage transformers. As an optimiza-
tion to the transformer architecture, a multi-stage transformer subsequently merges image
patches together across every layer to reduce the number of image patches that have to
be processed. The authors show that the merging process destroys important local to
global correspondences which are learnt in common transformers. Therefore, an additional
region matching loss is proposed that mitigates the lost semantic correspondences during
the merging process in multi-stage transformer architectures.

Multi-stage vision transformers. Vaswani et al. (2021) reduce computational com-
plexity of a standard transformer by reducing the number of patches that go through the
transformer at each layer. For this, a special image patch merging module merges the
patches at each layer and attention is calculated between them via sparse self-attention
modules. This process is repeated multiple times. An illustration of the procedure is
provided in Figure 12. Overall, the number of tokens, i.e., feature maps that have to be
evaluated by one self-attention module is reduced through each subsequent layer, while al-
lowing for more diverse feature learning due to the different self-attention heads processing
different merged patches, allowing for hierarchical correspondences to be learned.
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Figure 12: Multi-stage transformer: An image is decomposed into image patches, which
are merged and applied self-attention to subsequently. This results in a smaller number of
patches being processed simultaneously, while also learning hierarchical embeddings. At
the end, either average pooling is performed over the outputs or the output sequence is
used as it is.

Extending the loss function for region level feature matching. Li et al. (2021)
propose to extend DINO’s loss for multi-stage transformers in order to learn the local-to-
global correspondences lost during the merging process. As EsVit is an extension of DINO,
the teacher network and student network are defined as in Section 4.2. Li et al. (2021)
propose a loss function that consists of a view-level loss ℓview and a region-level loss ℓregion.
The view-level loss is the same loss used to train DINO, i.e.,

ℓview =
1

n

n∑
i=1

∑
j ∈Mi

∑
k ̸=j

dce(softmaxτ (z̄i
(j) − cview), softmaxρ(z

(k)
i )). (38)

where cview is the centering vector for the view-level loss.
The region-level loss of EsVit is computed from the encoder outputs for each image

patch Yi = [y
(1,1)
i , . . . , y

(m,T )
i ] directly (see Figure 12), where T is the sequence length, i.e.,

the number of patches for a given view j. Then the region-level loss is defined as

ℓregion =
1

n

n∑
i=1

∑
j ∈Mi

∑
k ̸=j

T∑
t=1

dce(softmaxτ (z̄
(j,s∗)
i − cregion), softmaxρ(z

(k,t)
i )). (39)

where s∗ = argmaxs scos(z̄
(j,s), z(k,t)), T is the number of image patches, and cregion is the

centering vector for the region-level loss. The idea is to match every image patch projection
of the student z(k,t) to the best image patch projection of the teacher z̄(j,s

∗). That is, for
every projection as defined by the multi-crop strategy in Figure 11, the region-level loss
matches the most concurring image patches of the student and teacher. The final EsVit
loss combines the view-level and region-level loss, i.e.,

LEsVit
θ,ϕ = ℓview + ℓregion (40)
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The authors show that when only training with the view-level loss on a multi-stage
transformer, the model fails to capture meaningful correspondences, such as the back-
ground being matched for two augmentations of the same image. Adding the region-level
loss mitigates the issue of lost region-level correspondences in multi-stage transformer ar-
chitectures and recovers some of the correspondences learnt inherently by monolithic trans-
former architectures.

4.4 Simple Siamese Representation Learning (SimSiam)

t

fθ gϕ qψ

t fθ gϕ qψ

sg

sg
x

x(1) y(1) z(1) ẑ(1)

x(2) y(2) z(2) ẑ(2)

scos

scos

view represent project predict

Figure 13: SimSiam maximizes the cosine similarity between the projected representa-
tions. Both networks use the same parameters. The stop gradient operator interrupts the
backward-flow of the gradients and thereby preventing the representational collapse.

SimSiam was introduced by Chen and He (2021) and uses a similar architecture and loss
function as BYOL. However, teacher and student share the same parameters and hence a
momentum encoder is not used as in previously presented teacher-student methods.

Given a batch of images X, for each image xi two views x
(1)
i = t(xi), x

(2)
i = t(xi) are

created using random transformations t ∼ T that are sampled for each image and each
view. For each of these views, a Siamese encoder fθ computes a representation y

(j)
i = f(x

(j)
i )

and a Siamese projector gϕ computes a projection z
(j)
i = gϕ(y

(j)
i ). Finally, the projection

is fed through a predictor qψ to obtain a prediction ẑ
(j)
i = qψ(z

(j)
i ).

The goal of the predictor is to predict the projection of the other view. Therefore, the
loss computes the negative cosine similarity between the prediction of the first view and
the projection of the second view, and vice versa, i.e.,

LSimSiam
θ,ϕ,ψ = − 1

n

n∑
i=1

1

2

[
scos(ẑ

(1)
i , sg(z

(2)
i )) + scos(ẑ

(2)
i , sg(z

(1)
i ))

]
, (41)

where sg(·) is the stop gradient operator that prevents gradients from being backpropagated
through this branch of the computational graph.

The encoder fθ is implemented as a ResNet (He et al., 2016). The projector gϕ and
the predictor qψ are MLPs. The authors show empirically that a predictor is crucial to
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avoid collapse. Chen and He (2021) argue that the gradient of the symmetrized loss with
a predictor that is the identity is in the same direction as the gradient of the symmetrized
loss between the two projections, such that the stop-gradient operation is cancelled out,
thus leading to representation collapse. Using a random predictor does not work either and
Chen and He (2021) argue that the predictor should always learn the latest representations.
This argument is similar to Grill et al. (2020) in Section 4.1, where the predictor should
be kept near optimal at all times.

Another crucial ingredient to their method is batch normalization (Ioffe and Szegedy,
2015), which is used for both fθ and gϕ. Furthermore, the authors experiment with the
training objective by replacing it with the cross-entropy loss. Their experiments show that
this also works, however the performance is worse. The key advantage of SimSiam is that
training does not require large batch sizes allowing the use of SGD instead of LARS.

5 Contrastive Representation Learning

Contrastive methods prevent representation collapse by decreasing the similarity between
representations of unrelated data points. Given a data point x∗ called the anchor, one
defines mechanisms to generate positive samples and negative samples for the anchor. The
positives should retain the relevant information of the anchor, while the negatives should
contain information different from the anchor. For vision tasks, the positives could, e.g.,
be random transformations of the same image, while the negatives are (transformations
of) other images. The goal of contrastive methods is to move representations of positives
closer to the representation of the anchor while moving representations of negatives away
from the anchor.

More formally, given an anchor x∗ we define the conditional distributions of positives
ppos(x

+|x∗) and negatives pneg(x
−|x∗). These distributions are induced by the mechanisms

that generate the positives and negatives and are not explicitly known. Let y∗ = fθ(x
∗),

y+ = fθ(x
+), and y− = fθ(x

−) be the corresponding representations, calculated with an en-
coder fθ parameterized by θ. The task of contrastive representation learning methods is to
maximize the likelihood of positive representations ppos(y

+|y∗) while minimizing the likeli-

hood of negative representations pneg(y
−|y∗). Note that we continue to use representations

y in this introduction, but the same methods can be applied to projections z equivalently.

Noise Contrastive Estimation (NCE). The idea of noise contrastive estimation (Gut-
mann and Hyvärinen, 2010) is to formulate the task of contrastive representation learning
as a supervised classification problem. One assumption of NCE is that the negatives are
independent from the anchor, i.e., pneg(x

−|x∗) = pneg(x
−). In this context, the negatives

are often called noise. There are two widely used approaches, the original NCE and In-
foNCE (van den Oord et al., 2018). Roughly speaking, NCE performs binary classification
to decide whether an individual sample is a positive or negative, whereas InfoNCE per-
forms multiclass classification on a set of samples to decide which one is the positive. In
the following we will explain InfoNCE in more detail.
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InfoNCE. For each anchor x∗, InfoNCE generates one positive sample from ppos(x
+|x∗)

and n− 1 negative samples from pneg(x
−). Let X = [x1, . . . , xn] be the set of those samples,

where xc is the positive with index c ∈ {1, . . . , n}. In the context of representation learning
we further compute representations using an encoder fθ and obtain the set Y = [y1, . . . , yn].

InfoNCE now defines a supervised classification task, where the input is (y∗, Y ) and
the class label is the index of the positive c. A classifier pψ(c|Y, y∗) with parameters
ψ is trained to match the true data distribution of the labels pdata(c|Y, y∗). A common
supervised learning objective is to minimize the cross-entropy between the data distribution
and the model distribution, i.e.,

min
ψ,θ

EY,y∗ [H(pdata(c|Y, y∗), pψ(c|Y, y∗))] (42)

= min
ψ,θ

EY,y∗
[
Ec|Y,y∗ [− log pψ(c|Y, y∗)]

]
. (43)

Note that this is an anticausal prediction problem, where the underlying cause (label)
is predicted from its effect (input) (Schölkopf et al., 2012). In InfoNCE we know the
underlying mechanism (since we generate the labels artificially), so we can derive the
optimal classifier using Bayes’ theorem.

First, we write down the data distribution of a set Y given a label and an anchor, i.e.,

pdata(Y |c, y∗) =
n∏
i=1

pdata(yi|c, y∗) =
n∏
i=1

{
ppos(yi|y∗), if i = c,

pneg(yi), if i ̸= c,
(44)

= ppos(yc|y∗)
∏
i ̸=c

pneg(yi) =
ppos(yc|y∗)
pneg(yc)

n∏
i=1

pneg(yi), (45)

where we assume conditional independence among the samples in Y . InfoNCE further
assumes that the labels are sampled uniformly, i.e., pdata(c) =

1
n
. Now we apply Bayes’

theorem:

pdata(c|Y, y∗) =
pdata(Y |c, y∗) pdata(c)∑n

c′=1 pdata(Y |c′, y∗) pdata(c′)
(46)

=

ppos(yc|y∗)
pneg(yc)

∏n
i=1 pneg(yi)

1
n∑n

c′=1
ppos(yc′ |y∗)
pneg(yc′ )

∏n
i=1 pneg(yi)

1
n

(47)

=

ppos(yc|y∗)
pneg(yc)∑n

c′=1
ppos(yc′ |y∗)
pneg(yc′ )

. (48)

An optimal classifier with zero cross-entropy would match this distribution. We can see
that the optimal probability of a class is the density ratio ppos(yc|y∗)

pneg(yc)
, normalized across

all classes. It describes the likelihood of yc being a positive sample for y∗ versus being a
negative sample. This motivates the choice of the classifier of InfoNCE, which is defined
similar to Equation 48:

pψ(c|Y, y∗) =
sψ(y

∗, yc)∑n
c′=1 sψ(y

∗, yc′)
, (49)
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where sψ(y
∗, y) is a predictor that computes a real-valued positive score. Minimizing the

cross-entropy from Equation 42 brings the model distribution pψ(c|Y, y∗) closer to the data
distribution pdata(c|Y, y∗), which ensures that sψ approaches the density ratio of the data,

i.e., sψ(y
∗, y) ≈ ppos(y|y∗)

pneg(y)
(in fact, it only needs to be proportional to the density ratio).

The density ratio is high for positive samples and close to zero for negative samples, which
means that sψ(y

∗, y) learns some similarity measure between the representations. Since ψ
and θ (i.e., predictor and encoder) are optimized jointly, the encoder is encouraged to learn
similar embeddings for an anchor and its positive, and to learn dissimilar embeddings for
an anchor and its negative samples (as long as the predictor is not too expressive). In other
words, the encoder is encouraged to extract information that is “unique” to the anchor
and the positive sample. Moreover, van den Oord et al. (2018) show that this objective
maximizes the mutual information between y∗ and y+, which is a lower bound on the
mutual information between x∗ and x+.

By combining the negative logarithm and the classifier (Equations 43 and 49) the
general InfoNCE loss for (y∗, Y, c) is defined as

InfoNCEsψ(y
∗, Y, c) = − log

(
sψ(y

∗, yc)∑n
c′=1 sψ(y

∗, yc′)

)
. (50)

For the sake of notation in the following sections, we slightly adjust this definition. All
considered methods compute the exponential of some score to obtain positive values for
sψ, which is why we include it directly in the loss function. In this case the InfoNCE loss
computes the commonly used softmax cross-entropy. Instead of specifying the class label
we denote the positive by y+ and the set of negatives by Ȳ . Thus, our final definition of
the InfoNCE loss for a score function sψ(y

∗, y) is

InfoNCEsψ(y
∗, y+, Ȳ ) = − log

(
exp(sψ(y

∗, y+))

exp(sψ(y∗, y+)) +
∑

ȳ ∈ Ȳ exp(sψ(y∗, ȳ))

)
. (51)

5.1 Contrastive Predictive Coding (CPC)

CPC (van den Oord et al., 2018) is an influential self-supervised representation learning
technique which is applicable to a wide variety of input modalities such as text, speech and
images. It is based on the theory of predictive coding, which originated in the neuroscience
literature by observing the learning behavior of biological neural circuits (Huang and Rao,
2011; Bastos et al., 2012). In short, a model tries to predict future outcomes given the
past or context. Thus, the learned representation of the context should incorporate all
information necessary for prediction while removing unimportant noise. This predictive
coding task is solved by formulating it as a contrastive learning problem. CPC operates on
sequential data, which is a natural choice for audio data, but can also be applied to vision
tasks by splitting images into sequences of patches.

Given a batch of images X, we consider a single image xi. The image is split into
m patches [x

(1)
i , . . . , x

(m)
i ]. Note that the patches are overlapping and that an additional
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Figure 14: In CPC training an image is transformed and split into overlapping patch
encodings, where the top rows (blue) act as the anchor. The positive samples (purple) lie
in a column below the exact anchor position and every other patch of the whole dataset is
a negative. InfoNCE is applied to distinguish between both distributions.

image augmentation is applied to each patch. A Siamese encoder fθ converts each patch
into a representation y

(j)
i = fθ(x

(j)
i ). The context of a patch are the patches in the same

row and all patches in the rows above. Let C
(j)
i ⊂ {1, . . . ,m} be the set of indices of those

patches. A projector gϕ computes a context representation z
(j)
i = gϕ([y

(k)
i : k ∈ C(j)

i ]) for
each patch. The network gϕ is implemented by a masked CNN (PixelCNN, van den Oord
et al., 2016) that restricts its receptive field to the patches in the context.

Given a context representation z
(j)
i , the predictive coding task of CPC is to predict

representations of future patches, which are the patches in the column below the patch.
Let F

(j)
i = [k

(j)
i,1 , . . . , k

(j)
i,K ] ⊂ {1, . . . ,m} be the set of indices of those patches. The predic-

tion task is solved by minimizing an InfoNCE loss for each future representation. For the
l-th future representation with patch index k = k

(j)
i,l , a separate predictor qψl computes

the anchor ŷ
(k)
i = qψl(z

(j)
i ) from the context representation, and the positive is the future

representation y
(k)
i . The negatives can be any unrelated representations, e.g., the represen-

tations of all patches outside the context and the future, as well as all representations from
other images in X. We denote the set of negatives by Ȳ

(j)
i . The loss function accumulates

the InfoNCE losses over all contexts and futures across the batch, i.e.,

LCPC
θ,ϕ,ψ =

1

n

n∑
i=1

1

m

m∑
j=1

∑
k∈F (j)

i

InfoNCEs(ŷ
(k)
i , y

(k)
i , Ȳ

(j)
i ), (52)

where the similarities are calculated using the dot product s(ŷ, y) = ŷ⊤y, and the param-
eters of all predictors are combined in ψ = [ψ1, . . . , ψK ]. See Figure 14 for an illustration
of the method.

CPC v2. The second version of CPC (Henaff, 2020) targets the problem of sample
efficiency. So far, contrastive methods require a large amount of data, especially the
need to find hard negatives, to perform well on common benchmarks such as ImageNet
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Figure 15: CMC assumes there are different interfaces to the world, that collect information
about a shared source. The goal is to find a consensus about the perceived information
coming from the different modalities. This is done by extracting the view-invariant features
in order to learn a shared representation.

(Bardes et al., 2021). This work focuses on the improvement of training routines rather
than modifying the general idea behind CPC. The most notable changes are improved
image augmentations, larger network sizes, using layer normalization (Ba et al., 2016)
instead of batch normalization (Ioffe and Szegedy, 2015), which creates an unintentional
co-dependency between the patches, and extending the prediction task to all four directions,
instead of predicting bottom from top patches only.

5.2 Contrastive Multiview Coding (CMC)

CMC (Tian et al., 2020) considers multiple views of the same scene and tries to maximize
the mutual information between those views. For each view, a view-specific encoder ex-
tracts view-invariant features. A contrastive learning objective forces the encoders to be
as informative as possible about the other views. In general, the views could be different
sensory inputs of the same scene (e.g., color, depth, surface normals). For vision tasks that
only have access to RGB images, the different views could be individual color channels.
In this paper, the authors consider the L and ab channels of an image after converting it
to the Lab color space. Note that the views can be interpreted as image augmentations,
however, each view uses the same image augmentation for all images, which is in contrast
to other methods.

To apply CMC to images, we definem fixed image transformations [t(1), . . . , t(m)]. LetX
be a batch of images that gets transformed intoX(j) = t(j)(X) for each view j ∈ {1, . . . ,m}.
The encoders fθ1 , . . . , fθm compute view-specific representations y

(j)
i = fθj(x

(j)
i ) for each

j ∈ {1, . . . ,m}. The representation used for downstream tasks can either be the repre-
sentation of a specific view or the concatenation of representations across multiple or all
views.

The idea of CMC is to apply the InfoNCE loss to pairs of views. Specifically, the
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anchor is the representation y
(j)
i of the j-th view, the positive is the representation y

(k)
i of

the same image but from the k-th view, where k ̸= j, and the negatives are representations
from other images but also from the k-th view. We denote the set of those negatives
images by Ȳ

(k)
i which are obtained using a memory bank (Wu et al., 2018). With memory

banks, large batches of negative samples can be obtained efficiently, at the cost of slightly
outdated representations.

The loss for a single image xi accumulates the InfoNCE losses of all ordered pairs of
views, so the total loss function across the batch is given as

LCMC
θ =

1

n

n∑
i=1

m∑
j=1

m∑
k=1; k ̸=j

InfoNCEsτ(y
(j)
i , y

(k)
i , Ȳ

(k)
i ), (53)

where the similarities are calculated as sτ (y, y
′) = scos(y, y

′)/τ , i.e., as cosine similarity
divided by a temperature hyperparameter τ > 0, and where θ = [θ1, . . . , θm] combines the
parameters of all encoders. See Figure 15 for an illustration of the method.

5.3 A Simple Framework for Contrastive Learning of Visual Rep-
resentations (SimCLR)

t
fθ gϕ

t
fθ gϕ

X

X(1) Y (1) Z(1)

X(2) Y (2) Z(2)

view represent project

InfoNCE

Figure 16: SimCLR defines the views in the batch that were constructed from different
images as negative examples.

The architecture used for SimCLR (Chen et al., 2020a) is similar to previous methods
like VICReg or Barlow Twins. Given a batch of images X, two views X(1) = t(X) and
X(2) = t(X) are created using random transformations t ∼ T . A Siamese encoder fθ
calculates representations Y (1) = fθ(X

(1)) and Y (2) = fθ(X
(2)) which are then fed into a

Siamese projector gϕ to obtain projections Z(1) = [z
(1)
1 , . . . , z

(1)
n ] = gϕ(Y

(1)) and Z(2) =

[z
(2)
1 , . . . , z

(2)
n ] = gϕ(Y

(2)). Figures 16 gives an overview over this process.
SimCLR uses a contrastive loss to maximize the similarity between the two projections

of the same image while minimizing the similarity to projections of other images. Specifi-
cally, for an image xi two InfoNCE losses are applied. The first one uses the anchor z

(1)
i ,

the positive z
(2)
i , and the negatives Z̄i = [z

(1)
1 , z

(2)
1 , . . . , z

(1)
n , z

(2)
n ] \ {z(1)i , z

(2)
i }, which are all

projections from other images in the batch. The second InfoNCE loss swaps the roles of
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anchor and positive but uses the same set of negatives. Therefore, the loss function is
defined as

LSimCLR
θ,ϕ =

1

n

n∑
i=1

1

2

[
InfoNCEsτ(z

(1)
i , z

(2)
i , Z̄i) + InfoNCEsτ(z

(2)
i , z

(1)
i , Z̄i)

]
, (54)

where the similarities are calculated as sτ (z, z
′) = scos(z, z

′)/τ , i.e., the cosine similarity
divided by a temperature hyperparameter τ > 0.

The transformations consist of a random cropping followed by a resize back to the
original size, a random color distortion, and a random Gaussian blur. A ResNet is used
as encoder fθ and the projector gϕ is implemented as an MLP with one hidden layer. To
train SimCLR large batch sizes are used in combination with the LARS optimizer (You
et al., 2017). The authors note that their method does not need memory banks (Wu et al.,
2018) as it is the case for other contrastive methods and is thus easier to implement.

5.4 Momentum Contrast (MoCo)

t
fθ gϕ

t
fθ̄ gϕ̄

momentumx

x∗ y∗ z∗

x+ y+ z+

student

teacher

InfoNCE queue

view represent project

Figure 17: MoCo computes projections of different views with a student and a teacher
network, and minimizes the contrastive InfoNCE loss. The projections z∗ and z+ are
computed on-the-fly, whereas negative projections are cached in a queue of the most recent
versions of z+ from previous iterations, significantly improving computational efficiency.

Momentum Contrast (He et al., 2020) is a contrastive learning approach that uses a mo-
mentum encoder with an encoding queue to bridge the gap between contrastive end-to-end
and memory bank methods (Wu et al., 2018). In essence, it allows the optimization of a
contrastive objective with significantly reduced computational costs, both in terms of time
and GPU memory (Chen et al., 2020b). Figure 17 gives an overview of the architecture.

Similar to teacher-student methods (Section 4), MoCo defines a student network con-
sisting of an encoder fθ and a projector gϕ with parameters θ and ϕ, and a teacher network
consisting of an encoder fθ̄ and a projector gθ̄ with parameters θ̄ and ϕ̄. Given an image
xi, two views x∗i = t(xi) and x

+
i = t(xi) are created using random transformations t ∼ T .

The student computes the representation y∗i = fθ(x
∗
i ) and projection z∗i = gϕ(y

∗
i ), while

the teacher computes the representation y+i = fθ̄(x
+
i ) and projection z+i = gϕ̄(y

+
i ).
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MoCo minimizes the InfoNCE loss to learn projections that are similar for two views of
the same image and dissimilar to projections of views of other images. In our notation, the
student computes the anchor z∗i , the teacher computes the positive z+i , and the selection
of the negatives Z̄i is described below. The loss of MoCo is then defined as

LMoCo
θ,ϕ =

1

n

n∑
i=1

InfoNCEsτ(z
∗
i , z

+
i , Z̄i), (55)

where the similarities are calculated using the dot product sτ (z
∗, z) = z⊤z∗/τ divided by

a temperature hyperparameter τ > 0. The teacher is updated by an exponential moving
average of the student, i.e.,

θ̄ ← αθ̄ + (1− α)θ, (56)

ϕ̄← αϕ̄+ (1− α)ϕ (57)

where α ∈ [0, 1] controls the rate at which the weights of the teacher network are updated
with the weights of the student network.

In an end-to-end setting, the negatives are computed on-the-fly in one batch (see Sim-
CLR, Section 5.3), resulting in relatively large resource consumption. In contrast, memory
banks (Wu et al., 2018) describe the concept of saving projections for all items in the
dataset, drastically reducing resource consumption but introducing potential negative ef-
fects from inconsistent or outdated projections. MoCo aims to combine the benefits of
both end-to-end training and memory banks. Similar to memory banks, MoCo only com-
putes projections of the positives and saves them for reuse in later iterations. Instead of
saving projections for all images in the dataset, MoCo uses a queue to cache only the last
K computed projections, thus avoiding outdated projections. Since older projections are
removed from the queue, saved projections no longer require momentum updates. The
teacher provides the projections that are to be cached, while the student is updated via
backpropagation using the contrastive loss.

MoCo v2. The second version of MoCo (Chen et al., 2020b) introduces several smaller
changes to further improve downstream performance and outperform SimCLR. The most
notable changes include the replacement of the linear projection layer of MoCo with an
MLP, as well as the application of a cosine learning rate scheduler (Loshchilov and Hutter,
2017) and additional augmentations. The new 2-layer MLP head was adopted following
SimCLR. Note, that the MLP is only used during unsupervised training and is not intended
for downstream tasks. In terms of additional augmentations, MoCo v2 also adopts the blur
operation used in SimCLR.

5.5 Pretext-Invariant Representation Learning (PIRL)

In the previously introduced pretext tasks we compute the representations of transformed
images to predict properties from specific transformations, i.e., rotation angles (Noroozi and
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Favaro, 2016) or patch permutations (Gidaris et al., 2018). In this way, representations
are encouraged to be covariant to the specific transformation, but are not guaranteed
to capture the same underlying semantic information regardless of the transformation
used. Although such covariance is advantageous in certain cases, we are more interested in
representations that are semantically meaningful, so it is desirable to learn representations
that are invariant to the transformation. In order to achieve this, Misra and Maaten
(2020) refined the pretext task loss formulation and developed an approach called Pretext-
Invariant Representation Learning (PIRL) which also makes use of memory banks (Wu
et al., 2018).

The goal of PIRL is to train an encoder network fθ that maps images x
(1)
i = xi and

transformed images x
(2)
i = tπ(xi) to representations y

(1)
i and y

(2)
i , respectively, which are

invariant to the transformations used. Analogous to Section 2.3, tπ denotes a jigsaw trans-
formation consisting of a random permutation of image patches, where π is the correspond-
ing permutation. The loss formulation of pretext tasks as defined in Section 2 emphasizes
that the encoder learns representations that contain information about the transformation
rather than semantics. Let z

(1)
i = gϕ(fθ(x

(1)
i )) and z

(2)
i = gψ(fθ(x

(2)
i )) be the projections

obtained by the encoder fθ and two separate projectors gϕ and gψ. The network is trained
by minimizing a convex combination of two noise contrastive estimators (NCE) (Gutmann
and Hyvärinen, 2010)

LPIRL
θ,ϕ,ψ =

1

n

n∑
i=1

λℓNCE

(
mi, z

(2)
i , M̄i

)
+ (1− λ)ℓNCE

(
mi, z

(1)
i , M̄i

)
, (58)

where mi is a projection from a memory bank corresponding to the original image xi, each
positive sample is assigned a randomly drawn set of negative projections M̄i of images other
than xi obtained from the memory bank, and λ ∈ [0, 1] is a hyperparameter. In contrast to
the previously introduced pretext tasks, the loss formulation of PIRL does not explicitly
aim to predict particular properties of the applied transformations, such as rotation or
patch indices. Instead, it is solely defined on images and their corresponding transformed
counterparts. NCE applies binary classification to each data point to distinguish positive
and negative samples. Here, the NCE loss is formulated as

ℓNCE(m, z, M̄) = − log[h(m, z, M̄)]−
∑
m̄∈ M̄

log[1− h(z, m̄, M̄)], (59)

where h models the probability that (xi, x
′
i) is derived from X as

h(u, v, M̄) =
exp(scos(u, v)/τ)

exp(scos(u, v)/τ) +
∑

m̄∈ M̄ exp(scos(m̄, v)/τ)
(60)

for a temperature τ > 0. Considering that the projections depend on the intermediate
representations, the individual terms in Equation 59 encourage y

(1)
i to be similar to y

(2)
i and

also y
(2)
i to be dissimilar to the representations of other images. Since this formulation alone

does not compare features between different untransformed images, the authors propose
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to use the convex combination of two NCE losses as defined in Equation 58. An overview
of this approach is illustrated in Figure 18. The encoder network fθ consists of the final
layer of ResNet50 (He et al., 2016), average pooling and a 128-dimensional fully connected
layer. As for the image transformation in the lower branch of Figure 18, we first extract
nine image sections and apply them individually to fθ to obtain patch representations
y
(2,k)
i . These are then randomly concatenated and sent through another fully connected

layer to obtain the 128-dimensional representation y
(2)
i . Although the authors focus their

work on the Jigsaw pretext task, their approach can be generalized to any other pretext
task. For demonstration purposes, the authors also conduct experiments with the rotation
pretext task and its combination with the Jigsaw task. In this way we have to adapt the
lower branch of Figure 18 by transforming the image at the beginning and feeding forward
the transformed image to achieve the representation y

(2)
i directly. Thus, using a secondary

fully connected layer is not necessary anymore.

fθ gϕ

t
fθ gψ

concatenate +
project

x

y(1) z(1)

y(2,k) y(2) z(2)

NCE

NCE

memory bank

view represent project

Figure 18: Architecture of PIRL. Minimizing a contrastive loss promotes similarity between
the representations of the image and its corresponding transformation.

Note that PIRL can also be classified as a pretext task approach as defined in Section 2.
However, it also uses ideas of contrastive representation learning which is why we decided
to discuss it at this point.

6 Clustering-based Methods

So far, some of the presented representation learning methods define a classification prob-
lem with hand-crafted labels to solve an auxiliary task (see Section 2). Instead of specifying
these class labels by hand, clustering algorithms, e.g., k-means Lloyd (1982), can be used
to create the labels in an unsupervised fashion.

The objective of clustering-based representation learning is to group images with similar
representations into clusters. In contrastive learning, for example, this would allow us to
discriminate between cluster assignments rather than individual images or representations,
which significantly increases efficiency. Over the time, numerous clustering-based methods
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have been developed, each with its own strengths and weaknesses. In the subsequent
sections, we present the most significant approaches.

6.1 DeepCluster

The first approach that implements the idea of clustering for representation learning is
DeepCluster (Caron et al., 2018), which alternates between inventing pseudo-labels via
cluster assignments and adjusting the representation to classify images according to their
invented labels. The motivation behind this is to increase the performance of convolutional
architectures that already exhibit a strong inductive bias, as these already perform rea-
sonably well with randomly initialized weights (Noroozi and Favaro, 2016). Overall, the
authors propose to repeatedly alternate between the following two steps to further improve
the encoder network:

1. Group the representations yi = fθ(xi) produced by the current state of the encoder fθ
to k clusters (e.g., by using k-means clustering).

2. Use the cluster assignments from step 1 as pseudo-labels βi for supervision to update
the weights, i.e.,

LDeepCluster
θ,ψ

1

n

n∑
i=1

dclassification(qψ(yi), βi), (61)

where a predictor network qψ tries to predict the cluster assignments of the represen-
tations yi = fθ(xi).

In their experiments, the authors utilize a standard AlexNet (Krizhevsky et al., 2017) with
k-means and argue that the choice of the clustering algorithm is not crucial.

6.2 Self Labelling (SeLa)

A common weakness of the naive combination of clustering and representation learning is
its proneness to degenerate solutions where, for example, all representations are assigned
to the same cluster. To circumvent this issue, Asano et al. (2019) have developed an refined
alternating update scheme, called Self Labelling (SeLa), which imposes constraints on the
labels such that each cluster is assigned the same amount of data points. The pseudo-labels
corresponding to images x1, . . . , xn are encoded as one-hot vectors β1, . . . , βn ∈ {0, 1}k.
To assign the pseudo-labels β1, . . . , βn and fit encoder and predictor networks fθ and qψ,
respectively, the authors consider the optimization problem

min
β,θ,ψ

1

n

n∑
i=1

dce(qψ(fθ(xi)), βi), (62)

s.t.
n∑
i=1

βi[j] =
n

k
, βi[j] ∈ {0, 1} for j ∈ {1, . . . , k}, (63)

which they solve by alternating between the following two steps:
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1. The problem of assigning the pseudo-label to the images is formulated as an opti-
mal transport problem which is solved using a fast variant of the Sinkhorn-Knopp
algorithm (Cuturi, 2013).

2. Fix the pseudo-labels from step 1 and update the parameters θ and ψ by minimizing
the cross-entropy loss.

Note that step 2 is the same as used in DeepCluster. However, in DeepCluster it is possible
for all data points to be grouped into a single cluster, which results in a constant represen-
tation being learned and consequently the minimum being achieved in both optimization
steps.

6.3 Swapping Assignments Between Multiple Views of the Same
Image (SwAV)

t
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x(2) y(2) q(2)
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Figure 19: SwAV does not actually measure the similarity between image representations of
different views, but instead compares the representations with codes obtained by assigning
the features to parameterized prototypes.

In general, contrastive methods are computationally challenging due to the need for
numerous explicit pairwise feature comparisons. However, Caron et al. (2020) propose
an alternative algorithm, called SwAV, that circumvents this problem by data clustering
while promoting consistency among cluster assignments across different views. In contrast
to DeepCluster and SeLa, SwAV is an online clustering-based approach, i.e., it does not
alternate between a cluster assignment and training step. An encoder network fθ is used
to compute image representations y(1) and y(2) of two views of the same image x. These
representations are then mapped to a set of k parameterized prototypes Cψ = [c1, . . . , ck],
resulting in corresponding codes q(1) and q(2). Next, a swapped prediction problem is
addressed, where the codes derived from one view are predicted using the encoding from
the second view. To achieve this, we minimize

LSwAV
θ,ψ =

1

n

n∑
i=1

ℓ(q
(1)
i , y

(2)
i ) + ℓ(q

(2)
i , y

(1)
i ), (64)

34



where ℓ(q, y) = dce(q, softmaxτ (C
⊤y)) quantifies the correspondence between the represen-

tation y and the code q for a temperature τ > 0. For an overview of the architecture we
refer to Figure 19. Note that, although SwAV takes advantage of contrastive learning, it
does not require the use of a large memory bank or a momentum network.

In addition to this method, the authors also propose the augmentation technique called
multi-crop, which was also used for DINO (see Section 4.2). Instead of using two views
with full resolution, a mixture of views with different resolutions is used. In this approach,
multiple transformations are compared by using considerably smaller ones, which leads to
a further improvement of previous methods such as SimCLR, DeepCluster and SeLa.

7 Taxonomy of Representation Learning Methods

As we have seen in this survey, there are several ways to learn meaningful representations of
images. These include solving specific tasks for pre-training such as predicting the rotation
angle of an image, maximizing the mutual information between different views of the same
image, using a contrastive loss in order to separate positive and negative samples in latent
space, learning from a teacher network and clustering and subsequently self-labeling images.
Based on these distinctions, we adapt and expand the taxonomy, proposed by Bardes et al.
(2021) in the following section, which includes the following five categories:

1. Pretext Tasks Methods

2. Information Maximization

3. Teacher-Student Methods

4. Contrastive Representation Learning

5. Clustering-based Methods

Note that some methods fit into multiple categories, as they combine different approaches.
CPC (v2) and CMC, e.g., both use a contrastive loss, as well as information maximization.
PIRL includes solving a pre-text and a contrastive loss to learn representations.

Figure 20 gives a visual overview on all methods within the proposed taxonomy. The
inner nodes show the five categories that are connected to each reviewed method. Methods
that can be assigned to several categories have multiple ingoing edges. As an additional
overview, Table 1 lists all methods including their primary class assignment and the URL
to the original implementation on Github1, if available.

1https://github.com

35

https://github.com


T
ab

le
1:

O
ve
rv
ie
w

ov
er

th
e
re
p
re
se
n
ta
ti
on

le
ar
n
in
g
ap

p
ro
ac
h
es

d
is
cu
ss
ed

in
th
is
p
ap

er
.

M
et
h
o
d

C
la
ss

C
o
d
e

A
u
to
en
co
d
er

(L
e
C
u
n
,
19
87
)

G
en
er
a
ti
ve

R
ot
at
io
n
(G

id
ar
is

et
al
.,
20
18
)

P
re
te
x
t-
T
a
sk

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
g
i
d
a
r
i
s
s
/
F
e
a
t
u
r
e
L
e
a
r
n
i
n
g
R
o
t
N
e
t

J
ig
sa
w

(N
or
o
oz
i
an

d
F
av
ar
o,

20
16
)

P
re
te
x
t-
T
a
sk

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
M
e
h
d
i
N
o
r
o
o
z
i
/
J
i
g
s
a
w
P
u
z
z
l
e
S
o
l
v
e
r

M
A
E

(H
e
et

al
.,
20
22
)

P
re
te
x
t-
T
a
sk

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
f
a
c
e
b
o
o
k
r
e
s
e
a
r
c
h
/
m
a
e

D
IN

O
(C

ar
on

et
al
.,
20
21
)

T
ea
ch
er
-S
tu
d
en
t

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
f
a
c
e
b
o
o
k
r
e
s
e
a
r
c
h
/
d
i
n
o

E
sV

iT
(L

i
et

al
.,
20
21
)

T
ea
ch
er
-S
tu
d
en
t

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
m
i
c
r
o
s
o
f
t
/
e
s
v
i
t

B
Y
O
L
(G

ri
ll
et

al
.,
20
20
)

T
ea
ch
er
-S
tu
d
en
t

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
d
e
e
p
m
i
n
d
/
d
e
e
p
m
i
n
d
-
r
e
s
e
a
r
c
h
/
t
r
e
e
/
m
a
s
t
e
r
/
b
y
o
l

V
ic
R
eg

(B
ar
d
es

et
al
.,
20
21
)

In
fo
-M

a
x

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
f
a
c
e
b
o
o
k
r
e
s
e
a
r
c
h
/
v
i
c
r
e
g

B
ar
lo
w

T
w
in
s
(Z
b
on

ta
r
et

al
.,
20
21
)

In
fo
-M

a
x

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
f
a
c
e
b
o
o
k
r
e
s
e
a
r
c
h
/
b
a
r
l
o
w
t
w
i
n
s

S
im

S
ia
m

(C
h
en

an
d
H
e,

20
21
)

In
fo
-M

a
x

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
f
a
c
e
b
o
o
k
r
e
s
e
a
r
c
h
/
s
i
m
s
i
a
m

W
-M

S
E

(E
rm

ol
ov

et
al
.,
20
21
)

In
fo
-M

a
x

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
h
t
d
t
/
s
e
l
f
-
s
u
p
e
r
v
i
s
e
d

S
im

C
L
R

(C
h
en

et
al
.,
20
20
a)

C
o
n
tr
a
st
iv
e

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
g
o
o
g
l
e
-
r
e
s
e
a
r
c
h
/
s
i
m
c
l
r

M
oC

o
(H

e
et

al
.,
20
20
)

C
o
n
tr
a
st
iv
e

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
f
a
c
e
b
o
o
k
r
e
s
e
a
r
c
h
/
m
o
c
o

M
oC

o
v
2
(C

h
en

et
al
.,
20
20
b
)

C
o
n
tr
a
st
iv
e

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
f
a
c
e
b
o
o
k
r
e
s
e
a
r
c
h
/
m
o
c
o

C
P
C

(v
an

d
en

O
or
d
et

al
.,
20
18
)

C
on

tr
a
st
iv
e/
In
fo
-M

a
x

C
P
C

v
2
(H

en
aff

,
20
20
)

C
on

tr
a
st
iv
e/
In
fo
-M

a
x

C
M
C

(T
ia
n
et

al
.,
20
20
)

C
on

tr
a
st
iv
e/
In
fo
-M

a
x

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
H
o
b
b
i
t
L
o
n
g
/
C
M
C

P
IR

L
(M

is
ra

an
d
M
aa
te
n
,
20
20
)

C
on

tr
a
st
iv
e/
P
re
te
x
t-
T
a
sk

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
f
a
c
e
b
o
o
k
r
e
s
e
a
r
c
h
/
v
i
s
s
l
/
t
r
e
e
/
m
a
i
n
/
p
r
o
j
e
c
t
s
/
P
I
R
L

D
ee
p
C
lu
st
er

(C
ar
on

et
al
.,
20
18
)

C
lu
st
er
in
g

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
f
a
c
e
b
o
o
k
r
e
s
e
a
r
c
h
/
d
e
e
p
c
l
u
s
t
e
r

S
eL

a
(A

sa
n
o
et

al
.,
20
19
)

C
lu
st
er
in
g

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
y
u
k
i
m
a
s
a
n
o
/
s
e
l
f
-
l
a
b
e
l

S
w
A
V

(C
ar
on

et
al
.,
20
20
)

C
lu
st
er
in
g

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
f
a
c
e
b
o
o
k
r
e
s
e
a
r
c
h
/
s
w
a
v

36

https://github.com/gidariss/FeatureLearningRotNet
https://github.com/MehdiNoroozi/JigsawPuzzleSolver
https://github.com/facebookresearch/mae
https://github.com/facebookresearch/dino
https://github.com/microsoft/esvit
https://github.com/deepmind/deepmind-research/tree/master/byol
https://github.com/facebookresearch/vicreg
https://github.com/facebookresearch/barlowtwins
https://github.com/facebookresearch/simsiam
https://github.com/htdt/self-supervised
https://github.com/google-research/simclr
https://github.com/facebookresearch/moco
https://github.com/facebookresearch/moco
https://github.com/HobbitLong/CMC
https://github.com/facebookresearch/vissl/tree/main/projects/PIRL
https://github.com/facebookresearch/deepcluster
https://github.com/yukimasano/self-label
https://github.com/facebookresearch/swav


Pretext Tasks
Methods

Representation
Learning

Teacher-
Student
Methods

Clustering-
based Methods

Contrastive
Methods

Information
Maximization

MAE

Autoencoder

Rotation

Jigsaw

PIRL

SimCLR

CPC/ v2

CMC

Moco/ v2

SimCLR v2

SimSiam

VicReg

W-MSE

Barlow Twins

BYOL

DINO

EsVit

DeepCluster

SeLa

SwAV

Figure 20: Graphical overview of the taxonomy of image representation learning methods.

8 Meta-Study of Quantitative Results

Accessing the quality of the learned representations can be tricky. One approach that
has become established in literature is to evaluate the obtained representations on down-
stream computer vision tasks, such as image classification, object detection, or instance
segmentation. In this section we explain the evaluation process for representation learning
methods and take a closer look at the most common evaluation tasks in literature. We
compare all reviewed methods with regard to their performance and report the results on
three different datasets. We perform a quantitative comparison and provide some insights
on potential future directions to further evaluate and compare the reviewed methods.

8.1 Evaluation of Representation Learning Methods

The performance of representation learning models is often measured and compared by
letting pre-trained models solve downstream tasks such as image classification. For pre-
training, a base architecture is chosen as encoder and trained in a self-supervised manner
without the use of labels. Many authors experiment with multiple architectures. One de-
fault architecture for image classification is the ResNet-50 (He et al., 2016), newer methods
often use Vision Transformers (ViT) (Dosovitskiy et al., 2020) as encoder. The learned
representations are then evaluated on different downstream tasks. We give more details on
the evaluation protocols later in this section.

We identified five datasets that were most commonly used to evaluate representation
learning methods: ImageNet (Russakovsky et al., 2015), the Pascal visual object classes
(VOC) (Everingham et al., 2009), Microsoft common objects in context (COCO) (Lin
et al., 2014), CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and Places205 (Zhou et al.,
2014). All listed datasets include one or multiple of the following tasks: image classification
(IC), object detection (OD) and instance segmentation (Seg). Table 2 shows which of the
most common datasets are used for evaluating each method.

To get a sense of the performance of all reviewed methods at a glance, we conduct a
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Table 2: Overview on datasets (ImageNet, Pascal VOC, Microsoft COCO, CIFAR and
Places-205) and tasks (image classification, object detection and instance segmentation)
each representation learning method has been evaluated on. The numbers underneath
indicate how many of the shown 20 methods used the corresponding dataset for evaluation.
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5

Rotation ✓ ✓ ✓ ✓ ✓ ✓
Jigsaw ✓ ✓ ✓ ✓
DINO ✓ ✓ ✓
MAE ✓ ✓ ✓ ✓
EsViT ✓ ✓ ✓ ✓ ✓ ✓
BYOL ✓ ✓ ✓ ✓ ✓ ✓
VicReg ✓ ✓ ✓ ✓ ✓ ✓
Barlow Twins ✓ ✓ ✓ ✓ ✓
SimSiam ✓ ✓ ✓ ✓
W-MSE ✓ ✓ ✓
SimCLR ✓ ✓ ✓ ✓ ✓
MoCo ✓ ✓ ✓ ✓
MoCo v2 ✓ ✓
CPC ✓
CPC v2 ✓ ✓
CMC ✓
PIRL ✓ ✓ ✓ ✓
DeepCluster ✓ ✓ ✓ ✓ ✓
SeLa ✓ ✓ ✓ ✓ ✓ ✓ ✓
SwAV ✓ ✓ ✓ ✓ ✓ ✓

# Total 20 11 13 5 7 7 8 7 8
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Figure 21: Reviewed methods Top-1 accuracy on ImageNet using a ResNet-50 encoder,
sorted by their first publication on arXiv2. The gray line marks the supervised benchmark.

quantitative comparison in the following. We report the evaluation results for ImageNet,
Pascal VOC and Microsoft COCO and identify gaps where further evaluation would be
interesting. All methods have been pre-trained on the ImageNet training set before further
evaluation.

ImageNet. Image classification on ImageNet, which includes 1000 different classes and
has established as an evaluation standard for representation learning methods, is mostly
evaluated in two ways. A linear classifier is either trained on top of the frozen pre-trained
representations, or the model weights are initialized with the pre-trained weights and fine-
tuned on 1% and 10% of the labeled ImageNet training data, respectively. Table 3 shows
the accuracy for each method either using a ResNet-50 encoder for better comparability
or a different architecture. We report both the top-1, as well as the top-5 accuracies.
Among the methods evaluated with a ResNet-50, DINO and SwAV perform best, nearly
reaching the performance of a supervised trained ResNet50. Considering the reported top-5
accuracy, BYOL performs best, right before VicReg and Barlow Twins. For other, bigger
architectures, EsViT and DINO both perform best, while utilizing architectures with a
comparatively little number of parameters.

Figure 21 shows the accuracy of all methods on the ImageNet training set using a
ResNet-50 encoder in chronological order of their first publication on arXiv2. Note that
not every reviewed method appears in the Figure, because some methods have not been
evaluated with a ResNet-50 architecture on ImageNet. It would be interesting to measure

2https://arxiv.org/
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Table 3: Top-1 and top-5 accuracy on ImageNet classification for a linear evaluation (on
the left) and semi-supervised learning, where the classifier is fine-tuned on 1% and 10% re-
spectively of the labeled ImageNet data (on the right). The upper part shows performance
for a ResNet-50 encoder and the lower part shows more results where other architectures
have been used. We also report the number of parameters for each network.

#Params Top-1 Top-5 Top-1 Top-5
Method 1% 10% 1% 10%

ResNet-50

Supervised (Zbontar et al.) 24M 76.5 - 25.4 56.4 48.4 80.4
DINO 24M 75.3 - - - - -
BYOL 24M 74.3 91.6 53.2 68.8 78.4 89.0
VicReg 24M 73.2 91.1 54.8 69.5 79.4 89.5
Barlow Twins 24M 73.2 91.0 55.0 69.7 79.2 89.3
SimSiam 24M 71.3 - - - - -
SimCLR 24M 69.3 89.0 48.3 65.6 75.5 87.8
MoCo 24M 60.6 - - - - -
MoCo v2 24M 71.1 90.1 - - - -
CPC v2 24M 63.8 85.3 - - - -
CMC3 24M 66.2 87.0
PIRL 24M 63.6 - 30.7 60.4 57.2 83.8
SeLa 24M 61.5 84.0
SwAV w multi-crop 24M 75.3 - 53.9 70.2 78.5 89.9

other architectures

Rotation4 55.4 77.9 - - - -
Jigsaw4 44.6 68.0 - - - -
MAE (ViT-H) 643M 76.6 - - - - -
DINO (ViT-B/8) 85M 80.1 - - - -
EsViT (Swin-B) 87M 80.4 - - - - -
BYOL (ResNet-200x2) 250M 79.6 94.8 71.2 77.7 89.5 93.7
W-SME 4 (ResNet-18) 79.0 94.5 - - - -
SimCLR (ResNet-50x4) 375M 76.5 93.2 - - 85.8 92.6
MoCo (ResNet-50x4) 375M 68.6 - - - - -
CPC (ResNetv2-101) 28M 48.7 73.6 - - - -
CPC v2 (ResNet-161) 305M 71.5 90.1 - - - -
CPC v2 (ResNet-33) - - 52.7 73.1 78.3 91.2
CMC3 (ResNet-50x2) 188M 70.6 89.7 - - - -
DeepCluster (AlexNet) 62M 41.0 - - - - -

3trained with RandAugment (Cubuk et al., 2020).
4reported numbers are from Kolesnikov et al. (2019).
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the performance of every method under the same conditions to make them comparable.
Nevertheless, the plot reveals some interesting points, e.g., that CPC v2 and CMC perform
better than most other early published self-supervised methods and SwAV has not been
beaten by any of the compared methods.

The goal of every representation learning method is to extract meaningful features
from images that are useful for various tasks. The quality of extracted features learned on
the ImageNet data can therefore be further assessed by transferring them to solve tasks on
other datasets like the Pascal VOC and COCO object detection and instance segmentation.
To evaluate the features on other tasks, the learned weights serve as initialization for a
network and a linear classifier is trained on top, while the network layers are fine-tuned.
Usually, the features are extracted from different layers of the network, while freezing the
weights of the others. The best values are reported for each method. In the following we
take a closer look at the results on the Pascal VOC and Microsoft COCO datasets. The
goal when performing object detection on these two datasets is to predict bounding boxes
for every object shown on the image. The task of instance segmentation is conducted
pixel-wise, where every pixel is classified separately.

Pascal VOC. With only 20 classes, the Pascal VOC (Everingham et al., 2009) dataset is
rather small and designed to resemble a real world setting. The data includes annotations
for image classification, object detection, as well as instance segmentation. The standard
metrics for the classification and object detection task are mean average precision (AP)
with different intersection over union (IoU) threshold values. For the task of segmentation
the mean IoU is reported. For a detailed overview on the aforementioned metrics we refer
to the work of Padilla et al. (2020).

The first five columns of Table 4 show the results for the Pascal VOC tasks side by side
for different architectures. For the object detection task Fast R-CNN (Girshick, 2015) and
Faster R-CNN (Ren et al., 2015) are most widely used. SwAV with multicrop performs
best on the image classification task, just before VicReg and Barlow Twins. Barlow Twins
and SwAV also perform best on the object detection task. From all methods that have
been evaluated on the segmentation task, BYOL, by far, outperforms every other method.
However, the results cannot be deemed as representative due to a lack of comparative
values for other methods.

COCO. The Microsoft COCO dataset is a large dataset for object detection and seg-
mentation including objects from 91 different classes, depicted in their natural setting.
In the second half of Table 4 we present the average precision for object detection and
instance segmentation. In the case of object detection it is the bounding box (BB) AP
and in case of the segmentation it is the AP of the segmentation mask (MK). Note that
we again report values for different encoder architectures. The most commonly used ar-
chitecture for both object detection and segmentation is a Mask R-CNN (He et al., 2017)
model with either the C4 or feature pyramid network (Lin et al., 2017) encoder. For both
tasks the overall AP is best for MAE, other values are missing and EsViT outperforms
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every other method for the AP50 and AP75. Again, for a profound insight a more detailed
experimental evaluation is necessary.

8.2 Future Directions

To conclude our quantitative meta-study we want to point out some interesting insights
and suggest some experiments to conduct in the future.

As the comparison of all representation learning methods has shown, the performance
strongly depends on the used network architecture. Some architectures, datasets and tasks
have been utilized throughout various works to evaluate the quality of self-supervised
trained image representations. Nevertheless, there is no standardized benchmark for a
consistent comparison of methods, yet. Goyal et al. (2019) suggest a range of tasks as
benchmark to cover many aspects and obtain a detailed comparison of methods in the
future.

One main contribution of this meta-study is the categorization and comprehensive pre-
sentation of different approaches to the overall aim to learn meaningful representations
of images. In Section 7 five main categories have been described into which different
approaches can be grouped. There already are some methods that combine multiple ap-
proaches that work well, which shows that the combination of different representation
learning methods holds potential for future research.

9 Conclusion

The goal of self-supervised representation learning is to extract meaningful features from
unlabeled image data and use them to solve all kinds of downstream tasks. In this work we
saw different strategies for representation learning and how they are related. We gave an
extensive overview of methods that have been developed over the last years and adapted
a framework to categorize them.
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